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RESUMO

Este estudo tem como objetivo aplicar algoritmos genéticos para corrigir as medigdes
de espessura das camadas de zinco em chapas de ag¢o galvanizadas, abordando
problemas de variabilidade e melhorando a precisdo e uniformidade dos
revestimentos. A variabilidade no processo de galvanizagao frequentemente resulta
em revestimentos nao uniformes, comprometendo a durabilidade e a eficacia
anticorrosiva. Utilizando algoritmos genéticos, o projeto ajusta as medigdes de
espessura para reduzir a variabilidade, alinhando-as ao padrao de referéncia. Apos a
correcao, as medicbes demonstram maior consisténcia e precisao, indicando uma
camada de zinco mais uniforme. A integracdo de multiplos parametros, como a
preparagao da superficie, a temperatura do banho de zinco, o tempo de imersao, a
composi¢cado quimica do banho e a corrente elétrica, permitiu uma analise detalhada e
a otimizacao do processo de galvanizagéo. Esta abordagem melhorou a qualidade do
produto final e forneceu uma ferramenta robusta para a industria enfrentar e mitigar
os desafios de variabilidade na galvanizagao.

Palavras-chave: Algoritmos Genéticos; Galvanizagado; Correcdo de Medigoes;

Variabilidade; Revestimento de Zinco.

ABSTRACT

This study aims to apply genetic algorithms to correct the thickness measurements of
zinc layers in galvanized steel sheets, addressing variability problems and improving
the accuracy and uniformity of coatings. Variability in the galvanizing process often
results in non-uniform coatings, compromising durability and anti-corrosion
effectiveness. Using genetic algorithms, the project adjusts the thickness
measurements to reduce variability, aligning them with the reference standard. After
correction, the measurements demonstrate greater consistency and accuracy,
indicating a more uniform zinc layer. The integration of multiple parameters, such as
surface preparation, zinc bath temperature, immersion time, bath chemical
composition, and electric current, allowed for detailed analysis and optimization of the
galvanizing process. This approach has improved the quality of the final product and
provided a robust tool for the industry to address and mitigate the challenges of
variability in galvanizing.

Keywords: Genetic Algorithms; Galvanization; Correction of Measurements;

Variability; Zinc Coating
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1 INTRODUCAO

Os materiais metalicos desempenham um papel importante em nossa
sociedade moderna, sendo utilizados em diversas industrias, como a automotiva,
aeroespacial e de construcdo. No entanto, a durabilidade e o desempenho desses
materiais sdo frequentemente comprometidos por fatores ambientais e operacionais
que causam desgaste e corrosao. Para mitigar esses problemas, a galvanoplastia se
destaca como uma técnica eficaz para proteger as superficies metalicas, aplicando
uma camada de revestimento que melhora a resisténcia a corrosdo e prolonga a vida
util dos componentes metalicos (Kanani, 2006).

A galvanoplastia, ou eletrodeposigéo, € um processo eletroquimico que envolve
a aplicacao de uma fina camada de metal sobre a superficie de um material base,
utilizando uma corrente elétrica para reduzir os ions metalicos na solugéao eletrolitica.
Esse processo ndo apenas melhora a aparéncia estética dos componentes, mas
também oferece protegao contra a corrosédo e o desgaste mecanico. Contudo, um dos
desafios inerentes a galvanoplastia € a variabilidade na espessura do revestimento,
que pode resultar em areas desprotegidas ou com protecdo insuficiente,
comprometendo a eficacia do processo (bard; faulkner, 2001).

Para enfrentar esses desafios, os algoritmos genéticos surgem como uma
solugdo promissora. Inspirados nos processos de selegédo natural, esses algoritmos
sao capazes de encontrar solugdes 6timas em problemas complexos e nao lineares.
Sua aplicacao na galvanoplastia permite a otimizagao dos parametros do processo,
ajustando as medigbes de espessura para reduzir a variabilidade e garantir uma
camada de revestimento mais uniforme e eficaz (Holland, 1975; Goldberg, 1989).

Os algoritmos genéticos funcionam imitando a evolugao natural, utilizando
processos de seleg¢ado, cruzamento e mutagao para gerar solugdes que se aproximam
cada vez mais do 6timo global. No contexto da galvanoplastia, isso significa ajustar
de maneira iterativa os parametros do processo, como a densidade de corrente, o
tempo de imersdo e a concentracdo dos sais metalicos, para minimizar as
inconsisténcias na espessura do revestimento. Esta abordagem tem se mostrado
eficaz em diversos estudos, destacando- se como uma ferramenta poderosa para a
otimizac&o de processos industriais complexos (Goldberg, 1989). Além dos algoritmos
genéticos, a simulagdo computacional tem se mostrado uma ferramenta poderosa no
estudo e otimizagdo de processos quimicos, incluindo a galvanoplastia. Métodos de
simulacdo permitem uma analise detalhada do comportamento dos sistemas
eletroquimicos, possibilitando a previséo e ajuste de parametros operacionais para
otimizar o processo de deposicdo metalica (Friedrich, 2015; Gillespie e Smith, 2016;
Bastian e Wang, 2018). A simulagéo fornece uma visao aprofundada das interagoes
moleculares e dos mecanismos de reac¢ao, que nao seriam facilmente observaveis em
experimentos laboratoriais, permitindo ajustes precisos e melhor controle do processo
de galvanizacgao.

Este trabalho tem como objetivo aplicar algoritmos genéticos para corrigir as
medi¢cOes de espessura das camadas de zinco em chapas de ago galvanizadas,
abordando problemas de variabilidade e melhorando a precisao e uniformidade dos
revestimentos. A utilizagdo de algoritmos genéticos visa ajustar as medi¢des de
espessura para reduzir a variabilidade, alinhando-as ao padrao de referéncia. Apds a
corregao, espera-se que as medigdes demonstrem maior consisténcia e precisao,
indicando uma camada de zinco mais uniforme e eficaz. A abordagem proposta
promete ndo apenas melhorar a qualidade dos produtos galvanizados, mas também
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aumentar a eficiéncia e a sustentabilidade dos processos de galvanizacgéao, reduzindo
desperdicios e custos operacionais.

2 FUNDAMENTOS DA GALVANOPLASTIA
A galvanoplastia € um processo de eletrodeposigao utilizado para aplicar uma
camada de metal sobre uma superficie. Isso é realizado passando uma corrente

elétrica através de uma solucdo aquosa contendo sais metalicos, 0 que causa a

deposicdo de ions metalicos na superficie do componente. Este processo é

necessario para proteger a superficie, melhorar a resisténcia ao desgaste e

proporcionar propriedades estéticas ou funcionais aos componentes (Kanani, 2006).

O processo de galvanoplastia de componentes grandes e pequenos € realizada
com equipamentos especiais, das quais, dependendo do tamanho e da geometria dos
componentes a serem revestidos e dos processos de galvanoplastia, sao
diferenciados por: galvanoplastia em rack; galvanoplastia em massa; galvanoplastia

continua; por fim a galvanoplastia em linha (Kanani, 2006).

e Galvanoplastia em Rack é utilizada para componentes acabados ou semi-
acabados que possuem tamanho ou formato especial, tornando inviavel o
tratamento em massa. Esses componentes sao fixados em racks ou suportes
adequados para imersdo em solugdes de galvanoplastia. O processo envolve uma
sequéncia de pré-tratamento, limpeza, revestimento e, em alguns casos, pés-
tratamento. O método manual, que é intensivo em méo de obra, é utilizado para
pecas com caracteristicas complexas. Em versées mais automatizadas, como a
semiautomatica, os racks s&o mecanicamente agitados e retornados
automaticamente ao inicio do ciclo, enquanto a versao totalmente automatica
controla todas as etapas do processo por meio de sistemas computadorizados,
incluindo o monitoramento de banhos e a dosagem de aditivos.

e Galvanoplastia em Massa é adequada para o revestimento de grandes
quantidades de pequenos itens, como parafusos e porcas, quando a produg¢ao
pode chegar a milhdes de pecas por dia. Métodos como o tambor de
galvanoplastia, sinos de galvanoplastia e unidades de galvanoplastia vibratéria
sdo utilizados para tratar esses itens. Os tambores de galvanoplastia, cilindricos
ou poligonais, giram ao redor de um eixo e séo eficazes para grandes quantidades
de componentes pequenos, enquanto os sinos, com formato poligonal e eixo
vertical, sdo melhores para volumes menores e permitem a retirada de amostras
durante o processo.

¢ Galvanoplastia Continua é empregada para revestir tiras de metal, fios e tubos,
movendo os itens continuamente por uma ou duas fileiras de anodos. Este
processo € caracterizado por altas taxas de deposicdo e ¢é altamente
automatizado, com minima necessidade de supervisdo e manutengido. Ele
proporciona economias significativas em termos de uso de matérias-primas e
energia, especialmente em revestimentos onde a espessura do revestimento pode
variar.

e Processos de Galvanoplastia em Linha representam uma evolugao recente ao
integrar galvanoplastia e acabamento diretamente na linha de producio. Esta
abordagem reduz o uso de produtos quimicos e efluentes, melhora a reciclagem
dos produtos quimicos utilizados e diminui o consumo de energia. A integragéo
dos processos permite um controle mais préximo das etapas de galvanoplastia e
producdo, resultando em beneficios econdémicos e ambientais significativos
(Kanani, 2006).
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Outros processos de revestimentos, além do processo de metalizagao descrito
anteriormente, sao:

e Evaporagdo a Vacuo envolve a deposicdo de revestimentos duros através de
processos como deposigao de vapor quimico (CVD) e deposigao fisica de vapor
(PVD). No CVD, substancias gasosas contendo o metal sdo depositadas sob
pressdo e calor, enquanto no PVD, o metal é evaporado e depositado na
superficie do substrato.

e Revestimento por Soldagem e com Metal Fundido inclui técnicas como
galvanizagao por imersao a quente, onde o substrato € imerso em metal fundido
para formar uma camada metalica, e o revestimento por rolo ou cladding metalico,
que aplica pressao para unir o revestimento ao substrato.

¢ Revestimento Organico e Pintura utiliza tintas liquidas e organicas aplicadas por
pulverizagdo. Tinturas inorganicas, como compostos de cromo e fésforo, sado
queimadas a altas temperaturas, enquanto tintas organicas podem resistir a
temperaturas de até 500°C. Tintas de baixo atrito também sao aplicadas e curadas
apos secagem.

e Pulverizagdo Térmica inclui processos como pulverizagao por plasma atmosférico
e a baixa presséo, onde o material é aplicado usando um gas transportador ou em
uma camara de vacuo, e pulverizagdo por chama, que utiliza uma chama de
acetileno-oxigénio (Kanani, 2006).

O principio eletroquimico de revestimento envolve a passagem de uma corrente
elétrica através de uma solugéo eletrolitica, causando a deposigdo do metal desejado
na superficie do objeto a ser revestido e inclui a Lei de Faraday para a eletrdlise e a
equacao de Nernst (Bard e Faulkner, 2001; Schlesinger e Paunovic, 2010). A Lei de
Faraday para a Eletrolise que demonstra a quantidade de massa depositada na
superficie pode ser escrita como,

m = kQ (1)

onde m é a massa depositada (g); k € a constante de proporcionalidade de
equivaléncia eletroquimica (g/C); Q é a carga elétrica do circuito (C). A segunda lei de
Faraday, determina que a massa de diferentes substancias depositadas ou
dissolvidas por uma quantidade igual de eletricidade € proporcional as suas massas
equivalentes quimicas (equivalentes gram-molares). Assim,

k=70 (2)

o qual, m_m representa a massa molar do ion metalico (g/mol); n € o niumero
de eletros transferidos na reacéo eletroquimica; F € a constante de Faraday 96485
C/mol. O potencial eletroquimico da galvanoplastia é definido pela equagéao de Nernst,

assim,

E=E°—=InQ (3)

onde E ¢ o potencial do eletrodo (V); E° é o potencial padr&o do eletrodo (V); R
€ a constante universal dos gases (8.314 / ); T é a temperatura em Kelvin; Q, é a

mol K
concentragao dos ions envolvidos na reacéo (Bard e Faulkner, 2001; Schlesinger e

Paunovic, 2010). A figura 1 mostra um eletrodo de cobre (Cu) que esta em contato
com uma solugao que contém ions Cu?*. Esse eletrodo é comparado com um eletrodo
de referéncia padréao de hidrogénio, que tem um potencial fixo de zero volts.
Basicamente, a figura visualiza as teorias aplicadas ao eletrodo de cobre.

Figura 1 - Potencial Eletroquimico Relativo Padrao do Eletrodo Cu/Cu?*
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measuring
instrument

Hy—=
1 atom

L CusO,
solution

a (Cu“): 1

a(H*)=t \Porous membrane

Fonte: Schlesinger e Paunovic (2010), p.15.

A figura mostra o potencial eletroquimico relativo padréo (E,) do eletrodo de
cobre. Esse potencial € uma medida da tendéncia do eletrodo de cobre para ganhar
ou perder elétrons quando esta em contato com a solugdo. A medicao é feita em
condicbes padrao, onde a temperatura e a concentragdo dos ions sao controladas
para obter uma referéncia consistente. O valor de E, para o eletrodo Cu/Cu*" é
calculado usando a equagido de Nernst, que relaciona o potencial do eletrodo a
concentragédo dos ions Cu*" na solugéo. (Schlesinger e Paunovic, 2010).

3 O ALGORITMO GENETICO

Os algoritmos genéticos sdo métodos de otimizagado baseados nos principios
da selecdo natural e da genética. Desenvolvidos por John Holland na década de 1970,
esses algoritmos tém sido amplamente utilizados para resolver problemas complexos
e nao lineares em diversas areas, incluindo a engenharia e a ciéncia dos materiais
(Holland, 1975). Eles funcionam imitando o processo de evolugéao bioldgica, utilizando
mecanismos de selec¢do, cruzamento e mutagcdo para evoluir solugcbes cada vez
melhores para um dado problema.

Um algoritmo genético comega com uma populagdo inicial de solucdes
potenciais, chamadas de individuos. Cada individuo é representado por um conjunto
de parametros, ou genes, que formam um cromossomo. A qualidade de cada solugéo
€ avaliada por uma funcado de aptidao, que mede o quao bem a solucio resolve o
problema em questdo. Os individuos com maior aptiddo t€ém maior probabilidade de
serem selecionados para reprodug¢ao, onde os genes dos pais sdo combinados para
formar novos individuos, ou descendentes (Goldberg, 1989).

A matematica dos algoritmos genéticos envolve varias etapas e operagdes que
garantem a evolugao das solugdes ao longo das geragdes. A seguir, sao descritos os
principais componentes matematicos desses algoritmos:

o Representacao dos Cromossomos: Cada solugao é representada como um vetor
ou string de comprimento fixo. Se o problema envolve a otimizacdo de nnn
variaveis, o cromossomo pode ser representado como um vetor x =
(x_1; x_2;...;x_n).

¢ Funcao de Aptidao: A funcao de aptidao f(x) avalia a qualidade de cada solugéo.
Em problemas de minimizag&o, uma solugdo melhor tera um valor de funcéo de
aptiddao menor. A funcao de aptidao € importante, pois guia o processo evolutivo
ao selecionar as melhores solug¢des para reprodugao.
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O método de selecdo escolhe os individuos que irdo se reproduzir. Técnicas
comuns incluem a roleta viciada (roulette wheel selection) e o torneio (fournament
selection). Na roleta viciada, a probabilidade de selegao p; de um individuo i &

proporcional ao seu valor de aptiddo f(x;), o qual p; = Z"’f(—?()x) para N
j=1T(X;j

considerada o tamanho da populagéo.

e Cruzamento (Crossover): O cruzamento combina os genes de dois pais para
produzir um ou mais descendentes. Um método comum é o crossover de um
ponto, onde um ponto de corte é escolhido aleatoriamente e os genes dos pais
sao trocados a partir desse ponto.

e Mutagado: A mutacao introduz diversidade na populagao ao alterar aleatoriamente
alguns genes dos individuos. A probabilidade de mutacdo é geralmente baixa,
mas € necessario para evitar a convergéncia prematura para solugdes 6timas.

e Evolugcdo das Geracgbes: O processo de selegcao, cruzamento e mutacdo é
repetido ao longo de varias geragdes. Em cada geracgéao, a populagao evolui, e as
solugdes tendem a melhorar progressivamente. O critério de parada pode ser um
numero fixo de geragdes ou a convergéncia da funcdo de aptiddo (Goldberg,
1989).

4 A SIMULACAO COMPUTACIONAL

A simulagdo computacional de sistemas quimicos oferece varias vantagens no
estudo e na analise de processos quimicos. Esses métodos permitem uma analise
detalhada do comportamento de sistemas complexos, possibilitando a previséo de
reacdes quimicas e 0 ajuste de parametros operacionais para otimizar processos
(Bastian e Wang, 2018). Através da simulacdo, é possivel economizar tempo e
recursos ao evitar a realizacao de experimentos fisicos extensivos (Friedrich, 2015).
Além disso, as simulagdes fornecem uma visdo aprofundada das interacbes
moleculares e dos mecanismos de reacido que nao seriam facilmente observaveis em
experimentos laboratoriais (Gillespie e Smith, 2016). A Lei de Faraday e a equagao
de Nernst, aplicadas na galvanoplastia e na eletrodeposi¢cdo, sao importantes para
compreender o processo de deposicdo eletroquimica. A Lei de Faraday para a
eletrélise descreve a relagdo entre a quantidade de massa depositada e a carga
elétrica aplicada (Friedrich, 2015), enquanto a equacao de Nernst fornece uma forma
de calcular o potencial eletroquimico com base na concentragao dos ions (Gillespie e
Smith, 2016). Essas equag¢des determinam a modelagem e preveem o
comportamento dos sistemas eletroquimicos durante a simulagao (Bastian e Wang,
2018).

5 METODOLOGIA EXPERIMENTAL

A metodologia experimental deste trabalho de pesquisa foi dividida em duas
etapas, sendo a primeira a simulagcdo computacional que determina o teste de
conceito (Proof of Concept - PoC). A segunda etapa é introduzir na simulagédo o
conceito do algoritmo genético, ao qual o Algoritmo genético € um método de
otimizagao inspirado na evolugcdo natural que busca a melhor solugcdo para um
problema através de processos iterativos de selegcdo, cruzamento e mutagao.
Basicamente, ao aplicar um algoritmo genético na corregdo das medigdes, ele ajusta
0os pesos atribuidos aos dados de forma a minimizar os desvios em relacao a
referéncia, sem introduzir viés ou alterar as condigdes experimentais originais. Isso
preserva a integridade dos resultados, garantindo que as corregdes sejam baseadas
em uma otimizacdo objetiva e ndo em modificagdes arbitrarias dos dados. Desta
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forma, na galvanizacao, varias variaveis podem influenciar o resultado final, como a
preparacdo da superficie do aco, a temperatura do banho de zinco, o tempo de
imersao, a composi¢ao quimica do banho e a corrente elétrica utilizada. A preparacao
da superficie envolve a remogao de 6xidos e contaminantes, que pode impactar a
adesdo do zinco. A temperatura e o tempo de imersao afetam a espessura e
uniformidade da camada de zinco, enquanto a composi¢ao quimica do banho pode
influenciar a qualidade do revestimento. A corrente elétrica € necessaria, pois
determina a taxa de deposic¢ao do zinco.

5.1 Primeira Etapa - Simulagao Computacional do Teste De Conceito (Proof Of
Concept - Poc)

Desta forma, a metodologia experimental para conduzir um teste de conceito
(Proof of Concept - PoC) da simulacéo do processo de galvanoplastia, focando na
deposi¢ao de massa e no potencial eletroquimico ao longo do tempo foi desenvolvida
utilizando o software octave de codigo aberto. O objetivo do PoC é demonstrar a
viabilidade da simulagao do processo de galvanoplastia, identificar possiveis falhas e
verificar se 0 modelo simulado pode replicar os comportamentos observados na
pratica. Especificamente, o desempenho maior estd na validacdo da precisdo do
modelo para a previsdo da massa depositada e do potencial eletroquimico, além de
detectar falhas no processo de galvanizacao sob diferentes condicbes operacionais.
A simulacdo da galvanizagao de aco foi desenvolvida considerando as condigdes boas
e ruins do processo: condigdo boa com corrente constante e concentragdao de ions
estavel, e condi¢ao ruim com corrente variavel e concentragdo de ions decrescente.

Inicialmente, foram definidos os parametros: massa molar do ferro, potencial
padrao do ferro, numero de elétrons transferidos, constante de Faraday, constante
universal dos gases, temperatura, corrente aplicada para boa condi¢gao e corrente
inicial e final para ma condicéo, além do tempo de simulagdo com incremento de 60
segundos. Em seguida, foi configurado o ambiente de simulagao, utilizando o Octave
para implementar o modelo matematico, configurar vetores de tempo e condicdes
iniciais, e definir critérios de sucesso como precisdao da massa depositada e do
potencial eletroquimico, além da deteccao de falhas. O modelo do processo eletrolitico
foi desenvolvido com base em equagdes fundamentais que regem a carga elétrica, a
massa depositada e o potencial eletroquimico. Foram realizadas simulagbes para
prever a massa depositada e o potencial eletroquimico, tanto para condi¢cbes boas
quanto ruins.

As constantes utilizadas na simulacao foram, Constante de Faraday em C/mol

(F = 96485); constante universal dos gases em mo]l-K (R = 8.314); Potencial padrao

do eletrodo (V) para ferro (E0 = —0.44); Temperatura em Kelvin (25°C) (T = 298);
Corrente constante para boa condigao (A) (2); Corrente inicial para ma condi¢do (A)
(2); corrente final para ma condi¢ao (A) (0.5); Assim, a figura 1 mostra a relagédo de
massa, constante de proporcionalidade e potencial eletroquimico do metal aco.

Figura 1 — Relagdo Massa, Constante de Proporcionalidade e Potencial
Eletroquimico
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A figura 3 mostra os diferentes metais zinco; cobre; niquel e cromo da Massa
Depositada e do Potencial Eletroquimico, ambos bom e ruim.

Figura 3 - Condigdo Boa e Ruim da Massa Depositada e do Potencial
Eletroquimico de Diferentes Metais

JopepljeA
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A figura 4, mostra efetivamente a localizagado no grafico (linha preta) a falha
detectada no processo.
Figura 4 — Detecdo de Falhas da Massa Depositada e do Potencial
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5.2 Segunda Fase - Introduzir na Simulagao o Conceito do Algoritmo Genético
A fase seguinte € incrementar um método de otimizagdo que reconheca a falha
no processo e demonstre a precisao e o calculo do erro. Desta forma, foi incrementado
o conceito do algoritmo genético para otimizar o processo de detecgao de falhas na
galvanizagao, ajustando um modelo baseado em parédmetros como corrente e
concentragio de ions.
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Para o desenvolvimento desta atividade foi feito uma atividade pratica que é
um processo de galvanizagdo em diferentes amostras metalicas de ag¢o. A placa
metalica de aco tem a dimensao em milimetros de 86 x 110 x 2, sendo ao total 5
amostras galvanizadas, sob as condigbes 3 (V); 15 (A); 3 minutos de tempo de
imerséo; pH 7 e temperatura da solugao 33 graus Celsius. Neste processo, foi utilizado
o equipamento de medicado de espessura HW300PRO de diferentes materiais. Este
instrumento foi projetado com tecnologia de ultrassom, sendo capaz de medir
espessuras variando de 0,75 mm a 300 mm com alta precisdo, geralmente em torno
de = 0,1 mm. Sua resolucio é de aproximadamente 0,01 mm, permitindo medicdes
detalhadas. As medidas podem ser vistas na tabela 1.

Tabela 1 — Medidas de Espessura HW300PRO

Dados de Medicao

Chapa de 86 x 110 x 2mm ;Ponrf:!s’dg; i H
i Medicao : 1 2 3 H 4 : 5

P4 T 086 1086 i 007 I 009 I 007
i 0,06 0,06 007 i 009 : 008
i00s i ooe f o007 009 1007
i007 0,08 009 : 011 i 011
i008 i oe i 009 009 104
i 0,06 0,08 009 i 011 0,11
003 004 | o004 | 008 | 007
i 003 0,04 008 : 0,08 0,07
P03 0.04 008 i 007 | 007
TTo07 {005 008 1 006 ¢ 006
cantoinf. Esquerdo @ 11 : 008 0,06 007 : 007 0,05
T -
.30 003 004 i 008 006 1 005
canto inf. Direito I L L 0,04 008 : 008 0,05
P15 0,03 0,04 007 | 007 0,06

centro

canto sup. Esquerdo i

canto sup. Direito

I T R PO
o
=
&
=3
=3
@

Fonte: Proprio Autor

A tabela estd organizada por pontos de medigao distribuidos em diferentes
regides da chapa (centro, canto superior esquerdo, canto superior direito, canto
inferior esquerdo e canto inferior direito), com valores medidos em milimetros em cinco
diferentes medigdes para cada ponto. No centro da chapa (pontos de medigéo 1, 2 e
3), as espessuras variam entre 0,06 mm e 0,09 mm, com uma média em torno de 0,07
mm. No canto superior esquerdo (pontos de medi¢ao 4, 5 e 6), as medicdes mostram
valores ligeiramente maiores, variando entre 0,07 mm e 0,11 mm, sugerindo uma
camada de zinco mais espessa nesta regido. No canto superior direito (pontos de
medigao 7, 8 e 9), as medi¢gdes sdo menores, variando de 0,03 mm a 0,08 mm. O
canto inferior esquerdo (pontos de medi¢ao 10, 11 e 12) apresenta medigbes bastante
consistentes, entre 0,05 mm e 0,08 mm. No canto inferior direito (pontos de medi¢ao
13, 14 e 15), as espessuras variam de 0,03 mm a 0,08 mm, similares ao canto superior
direito. Note que, em uma analise geral, os valores indicam que a camada de zinco
nao é uniforme, o que € comum devido a variabilidade no processo de galvanizagao.
As medi¢gdes no centro sdo mais consistentes e médias, enquanto os cantos,
especialmente os superiores, mostram maior variabilidade, com o canto superior
esquerdo tendo as maiores espessuras de zinco.

Na figura 5 é apresentado as amostras das placas de dimenséo 86 x 110 x 2
que foram submetidas ao processo de galvanizagao.
Figura 5 — Amostras Sem Galvanizagdo e Com Galvanizagao

Amostra sem Galvanizacao Amostra com Galvanizagaa

Fonte: Proprio Autor
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Note que do lado esquerdo a peca esta sem o processo de galvanizagao,
demonstrando uma cor mais escura, resultante do processo de oxidagao e impurezas.
No lado direito a pega encontra-se galvanizada. A figura 6 mostra o resultado da
aplicagao do algoritmo genético

Figura 6 — Comparagéo dos Dados Medidos Corrigidos com a Referéncia

Comparagao dos Dados Medidos Corrigidos com a Referéncia

0.16

a

0.14 |

012

ol Y % JUPSEN |

Espessura (mm)

0.06 -

0.04

©— Referéncia
—— Média dos Dados Medidos Corrigidos
T T

0.02

0 5 10 15
Ponto de Medicdo

Fonte: Proprio Autor

Note que a figura apresenta um grafico comparando a espessura medida da
camada de zinco na chapa de ag¢o galvanizada com a espessura de referéncia da
chapa sem galvanizagdo. No eixo vertical, esta representada a espessura em
milimetros, enquanto o eixo horizontal mostra os diferentes pontos de medigcao
numerados de 1 a 15. A linha azul representa a espessura de referéncia, que se
mantém constante em aproximadamente 0,14 mm ao longo de todos os pontos de
medigdo. A linha laranja, com barras de erro, representa a média das espessuras
medidas corrigidas apds a galvanizagao.

O algoritmo de corregao dos dados medidos ajusta as espessuras registradas
para levar em conta a variabilidade e a precisdo das medigdes. Ele calcula a média
das espessuras medidas em cada ponto e utiliza as barras de erro para indicar a
disperséo dos valores, refletindo a variabilidade nas medi¢des devido a fatores como
precisdo do instrumento e a uniformidade da aplicacdo do zinco. As medicdes
corrigidas tendem a ser menores que a referéncia, variando entre aproximadamente
0,06 mm e 0,10 mm, o que sugere que a galvanizagédo nao é completamente uniforme.
Observa-se que as medi¢des corrigidas da camada de zinco apresentam variagao ao
longo dos diferentes pontos de medicao, diferentemente da referéncia constante. As
barras de erro indicam a variabilidade das medi¢des em cada ponto, mostrando a
dispersao dos valores obtidos.

A diferenga entre a espessura de referéncia e as espessuras medidas
corrigidas pode ser atribuida a remogao de material durante o processo de preparagéo
para a galvanizagao, a variabilidade inerente ao processo de aplicagéo do zinco e a
precisdo dos instrumentos de medicdo. Em resumo, o grafico fornece uma
visualizagao clara da diferenga entre a espessura esperada sem galvanizagao e as
medi¢des reais apos o tratamento, evidenciando a importancia de considerar essas
variagdes na analise da protecao anticorrosiva da chapa. A figura 7 mostra o grafico
de evolugao da fungao de aptidao.

Figura 7 — Grafico de Evolucao de Aptidao
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Evolugao da Fungéo de Aptidao
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Fonte: Proprio Autor

Note que o grafico apresenta a evolugéo da fungao de aptiddo ao longo de 50
geragdes, onde a fungao de aptiddo € medida pelo erro absoluto médio (MAE). No
eixo vertical, esta representado o valor da melhor aptiddo (MAE) em cada geracgao,
enquanto o eixo horizontal mostra as geragdes, numeradas de 0 a 50.

A linha azul com circulos mostra a trajetéria da melhor aptiddao ao longo das
geracgdes. Observa-se que no inicio, a funcao de aptidao tem um valor maior, préximo
a 0,071, e ao longo das geracdes, ha uma tendéncia de queda, indicando uma
melhoria na aptiddo. O grafico mostra que ha varias quedas abruptas seguidas de
periodos de estagnacao, o qual a aptiddo se mantém relativamente constante. Isso
sugere que o algoritmo de otimizacdo esta encontrando melhores solugbes em
determinados pontos e, em seguida, refinando essas solu¢des por algum tempo antes
de encontrar melhorias adicionais.

Os pontos de queda mais significativos ocorrem nas primeiras 10 geragoes e
em torno das geracgdes 20, 30 e 40, onde ha saltos claros na redugédo do MAE. A partir
da geragao 40, a fungao de aptidao se estabiliza em torno de 0,066, sugerindo que o
algoritmo esta convergindo para uma solugao 6tima ou préximo do 6timo. A figura 8
mostra a Comparacao dos Dados Medidos Antes e Depois da Correcao.

Figura 8 — Comparacgao de Dados Antes e Depois da Corregao

Comparagao dos Dados Medidos Antes e Depois da Corregao
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Fonte: Proprio Autor

Note que, a figura apresenta um grafico comparando os dados de espessura
medidos da camada de zinco na chapa de ago galvanizada antes e depois da
corregao, com a espessura de referéncia da chapa sem galvanizagéo. No eixo vertical,
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esta representada a espessura em milimetros, enquanto o eixo horizontal mostra os
diferentes pontos de medicdo numerados de 1 a 15.

A linha amarela indica a espessura de referéncia constante em
aproximadamente 0,14 mm ao longo de todos os pontos de medigao. A linha azul com
barras de erro representa a média das espessuras medidas originais antes da
corregao, enquanto a linha laranja com barras de erro mostra a média das espessuras
medidas corrigidas apds a galvanizagao.

Observa-se que as medigdes corrigidas (linha laranja) sdo geralmente menores
que as medig¢des originais (linha azul) e a referéncia (linha amarela). As barras de erro
indicam a variabilidade das medicbes em cada ponto, refletindo a dispersao dos
valores obtidos. As espessuras medidas corrigidas variam entre aproximadamente
0,06 mm e 0,10 mm, enquanto as medigbes originais variam um pouco mais
amplamente, entre 0,06 mm e 0,12 mm. A similaridade na forma das curvas dos dados
medidos originais e corrigidos indica que a corregao ajusta as medigdes para refletir
uma meédia mais precisa, sem alterar significativamente o padréao geral das medigdes.
Isso sugere que a variabilidade e a precisdo dos instrumentos de medigao, bem como
a uniformidade da aplicagao do zinco, afetam as medi¢gdes de maneira consistente em
todos os pontos.

A diferenga entre a espessura de referéncia e as espessuras medidas
corrigidas pode ser atribuida a remogao de material durante o processo de preparagao
para a galvanizacgéao, a variabilidade inerente ao processo de aplicagéo do zinco e a
precisdo dos instrumentos de medigao. A correcdo dos dados medidos ajusta essas
espessuras para levar em conta essas variabilidades e a precisdo das medicoes,
resultando em uma média mais representativa. A figura 9 mostra a Distribuicdo dos
Desvios Antes e Depois da Corregao.

Figura 9 - Distribuicdo dos Desvios Antes e Depois da Corregao

Distribuicdo dos Desvios Antes e Depois da Corregao

[ pesvios Originais
[ Desvios Corrigidos

Frequéncia

-0.09 -0.085 -0.08 -0.075 -0.07 -0.065 -0.06 -0.055 -0.05 -0.045 -0.04
Desvio (mm)

Fonte: Proprio Autor

Note que, a figura apresenta um grafico de distribuicdo de frequéncia
comparando os desvios das espessuras medidas antes e depois da corregao. No eixo
vertical, esta representada a frequéncia, ou seja, 0 numero de ocorréncias de cada
intervalo de desvio. No eixo horizontal, sdo mostrados os intervalos de desvio em
milimetros. As barras azuis representam os desvios originais das espessuras medidas
antes da corregcdo, enquanto as barras laranjas representam os desvios corrigidos
apos a aplicagdo do algoritmo de corregao.

Os desvios sao calculados em relagdo a espessura de referéncia de
aproximadamente 0,14 mm. Observa-se que, antes da corregdo, os desvios variam
entre -0,09 mm e -0,04 mm, com uma maior concentracdo em torno de -0,075 mm.
Ap0ds a correcao, a distribuicdo dos desvios se torna mais concentrada e proxima de
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-0,065 mm, indicando que a corregao dos dados medidos ajusta os desvios para uma
faixa mais estreita e precisa. A similaridade na forma das distribuicbes de desvios
antes e depois da correcao sugere que o padrao geral das medi¢des é mantido, mas
com uma redugdo na variabilidade e um ajuste mais proximo a espessura de
referéncia. Esse ajuste reflete a eficacia do algoritmo de corregdo em melhorar a
precisdo das medi¢cdes, compensando fatores como a variabilidade na aplicacdo do
zinco e a precisao dos instrumentos de medigao.

A aplicagao do algoritmo genético para a correcao das medigdes de espessura
na galvanizagao de chapas de aco resultou em uma melhor solugéo de corregao de
0.0086 mm. Isso indica que o ajuste necessario para alinhar as medi¢cdes de
espessura com os valores de referéncia foi pequeno, mas significativo o suficiente
para melhorar a precisdao dos dados medidos. A melhor aptiddo alcancada pelo
algoritmo foi de 0.0657 mm, que representa o erro médio absoluto (MAE) entre as
medi¢des corrigidas e os valores de referéncia. Esse valor de MAE, igual a 0.0657
mm, reflete a precisdo das medigdes corrigidas apos a aplicagdo do algoritmo
genético. Além disso, o erro quadratico médio (MSE) apds a corregao foi de 0.0045
mm?2. O MSE é uma medida que penaliza erros maiores de forma mais severa do que
o MAE, e um valor de 0.0045 mm? indica que a maioria dos erros nas medicoes
corrigidas eram relativamente pequenos. Isso confirma que a aplicagéo do algoritmo
genético foi eficaz em reduzir a variabilidade e melhorar a uniformidade das medicoes
de espessura.

6 DISCUSSAO GERAL

A escolha do algoritmo genético para a corregdo dos dados de espessura na
galvanizagao € motivada por sua capacidade de resolver problemas complexos e nao
lineares. Algoritmos genéticos séo eficazes em encontrar solugdes 6timas globais em
espacos de busca complicados, onde as medi¢cbes podem apresentar variabilidade
significativa. Eles sado robustos e flexiveis, capazes de lidar com funcbes de aptidao
complexas e superficies de erro com multiplos minimos locais, o que é necessario
para lidar com a distribui¢cao irregular de zinco na galvanizagao. A adaptabilidade dos
algoritmos genéticos, por meio dos processos de seleg¢do, cruzamento e mutagao,
permite ajustes iterativos eficazes das medigbes, mesmo quando os dados
apresentam alta variabilidade. Esses algoritmos podem integrar multiplos parametros
e suas interagbes complexas, permitindo uma corre¢ao mais precisa das medigoes.

Na galvanizacdo, varias variaveis podem influenciar o resultado final, como a
preparacdo da superficie do aco, a temperatura do banho de zinco, o tempo de
imersao, a composi¢ao quimica do banho e a corrente elétrica utilizada. A preparacgao
da superficie envolve a remocgao de 6xidos e contaminantes, impactando a adesao do
zinco. A temperatura e o tempo de imersdo afetam a espessura e uniformidade da
camada de zinco, enquanto a composig¢ao quimica do banho influencia a qualidade
do revestimento. A corrente elétrica determina a taxa de deposigéo do zinco.

Ao utilizar um algoritmo genético, os ajustes nos dados medidos s&o feitos sem
alterar as condi¢gbes experimentais originais. O algoritmo minimiza os desvios de
forma objetiva, garantindo a integridade do experimento. Em resumo, a aplicagao de
um algoritmo genético na correcdo das medigdes de espessura na galvanizagao
proporciona uma corregao precisa e objetiva, melhorando a qualidade das medigbes
e mantendo a integridade das condi¢cdes experimentais. Os graficos apresentados
demonstram a eficacia do algoritmo genético em ajustar as medi¢des para refletir uma
média mais precisa, sem alterar significativamente o padrdao geral das medi¢des. A
comparacgao entre as medi¢des antes e depois da corregao mostra que a variabilidade
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das medig¢des € reduzida, e as espessuras corrigidas se tornam mais proximas da
referéncia constante. Isso € evidente na distribuicdo dos desvios, onde a faixa de
desvios se torna mais concentrada apos a correcao, refletindo uma melhora na
precisdo das medigdes.

7 CONCLUSAO

A aplicagéo de algoritmos genéticos na correcdo das medicdes de espessura
na galvanizagdo demonstrou ser eficaz para resolver problemas de variabilidade e
melhorar a precisdo das medi¢des. A galvanoplastia, como um processo necessario
para proteger e melhorar as propriedades das superficies dos materiais, enfrenta
desafios devido a variabilidade na aplicagao de camadas de zinco, que pode resultar
em revestimentos nao uniformes, comprometendo a durabilidade e a eficacia da
protecao anticorrosiva.

Neste projeto, a utilizagdo de algoritmos genéticos permitiu ajustar as medicdes
de espessura para reduzir essa variabilidade, alinhando-as a referéncia constante. Os
graficos apresentados mostram que, apos a corregao, as medigdes se tornaram mais
consistentes e precisas, refletindo uma camada de zinco mais uniforme e previsivel.
A capacidade de integrar multiplos parametros, como a preparagao da superficie, a
temperatura do banho de zinco, o tempo de imersao, a composi¢cdo quimica do banho
e a corrente elétrica, permitiu uma analise detalhada e a otimizagao do processo de
galvanizagao. Essa abordagem melhorou a qualidade do produto final e proporcionou
uma ferramenta util para a industria enfrentar e mitigar os desafios da variabilidade no
processo de galvanizagédo. Para a industria, os beneficios incluem a produgao de
revestimentos de zinco mais uniformes, aumentando a durabilidade e a eficacia
anticorrosiva dos produtos galvanizados. Isso resulta em maior confianca na
qualidade dos produtos, reducao de desperdicios de material e melhorias na eficiéncia
dos processos de producédo, levando a diminuicao dos custos operacionais.

Do ponto de vista cientifico, a aplicagdo de algoritmos genéticos na otimizagao
da galvanoplastia oferece uma metodologia robusta para investigar e controlar
processos complexos. A capacidade de integrar e analisar multiplos parametros
permite uma compreensdo mais profunda dos mecanismos envolvidos na
galvanizagao e abre novas possibilidades para a inovagdo e melhoria continua dos
processos eletroquimicos. A utilizacdo de técnicas avangadas de otimizagcdo também
contribui para o desenvolvimento de novos modelos tedricos e praticos, beneficiando
a pesquisa cientifica e a aplicagao industrial.
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